Solve the system of non-homogeneous equations by a clean matrix form: 5x₁ + 20x₃ = 50 10x₂ + 20x₃ = -30 5x₁ - 10x₂ = 80
To solve the system of equations in a clean matrix form, we start by rewriting the equations in standard form:
1. \( 5x_1 + 20x_3 = 50 \)
2. \( 10x_2 + 20x_3 = -30 \)
3. \( 5x_1 - 10x_2 = 80 \)
We can express these equations in matrix form \( Ax = b \):
- Coefficient matrix \( A \):
\[
A = \begin{bmatrix}
5 & 0 & 20 \\
0 & 10 & 20 \\
5 & -10 & 0
\end{bmatrix}
\]
- Variable vector \( x \):
\[
x = \begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
\]
- Constant vector \( b \):
\[
b = \begin{bmatrix}
50 \\
-30 \\
80
\end{bmatrix}
\]
Now, the system can be written as:
\[
\begin{bmatrix}
5 & 0 & 20 \\
0 & 10 & 20 \\
5 & -10 & 0
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
=
\begin{bmatrix}
50 \\
-30 \\
80
\end{bmatrix}
\]
To solve for \( x \), we can use row reduction or another method to find \( x \). Here, let’s augment \( A \) with \( b \) and perform row reduction:
\[
\left[\begin{array}{ccc|c}
5 & 0 & 20 & 50 \\
0 & 10 & 20 & -30 \\
5 & -10 & 0 & 80
\end{array}\right]
\]
**Step 1: Simplify the first row:**
Divide the first row by 5:
\[
\left[\begin{array}{ccc|c}
1 & 0 & 4 & 10 \\
0 & 10 & 20 & -30 \\
5 & -10 & 0 & 80
\end{array}\right]
\]
**Step 2: Eliminate \( x_1 \) from rows 2 and 3:**
We already have:
- Row 1: \( R_1 = [1, 0, 4 | 10] \)
Now update row 3 using row 1:
\[
R_3 = R_3 - 5R_1 \Rightarrow [5 - 5*1, -10 - 5*0, 0 - 5*4 | 80 - 5*10] = [0, -10, -20 | 30]
\]
Now the augmented matrix is:
\[
\left[\begin{array}{ccc|c}
1 & 0 & 4 & 10 \\
0 & 10 & 20 & -30 \\
0 & -10 & -20 & 30
\end{array}\right]
\]
**Step 3: Simplifying row 2:**
Divide the second row by 10:
\[
\left[\begin{array}{ccc|c}
1 & 0 & 4 & 10 \\
0 & 1 & 2 & -3 \\
0 & -10 & -20 & 30
\end{array}\right]
\]
**Step 4: Eliminate \( x_2 \) from row 3:**
Add \( 10R_2 \) to \( R_3 \):
\[
R_3 = R_3 + 10R_2 \Rightarrow [0 + 0, -10 + 10, -20 + 20 | 30 - 30] = [0, 0, 0 | 0]
\]
The augmented matrix now looks like:
\[
\left[\begin{array}{ccc|c}
1 & 0 & 4 & 10 \\
0 & 1 & 2 & -3 \\
0 & 0 & 0 & 0
\end{array}\right]
\]
**Step 5: Back-substitution:**
From this row-reduced form, we can extract the equations:
1. \( x_1 + 4x_3 = 10 \)
2. \( x_2 + 2x_3 = -3 \)
We solve these for \( x_1 \) and \( x_2 \):
- From the second equation, we have:
\[
x_2 = -3 - 2x_3
\]
- Substitute \( x_2 \) into the first equation:
\[
x_1 = 10 - 4x_3
\]
The general solution based on \( x_3 \) (a free variable) is:
\[
x = \begin{bmatrix}
10 - 4t \\
-3 - 2t \\
t
\end{bmatrix}
\]
where \( t = x_3 \).
Thus, the solution for the system of equations in parametric form is:
\[
x_1 = 10 - 4t, \quad x_2 = -3 - 2t, \quad x_3 = t
\]
for any \( t \in \mathbb{R} \).
Update (2024-12-03):
To solve the given system of non-homogeneous equations using matrix form, we can represent the system in the form \( Ax = b \), where \( A \) is the coefficient matrix, \( x \) is the variable vector, and \( b \) is the constant vector.
The system of equations is:
1. \( 5x_1 + 20x_3 = 50 \)
2. \( 10x_2 + 20x_3 = -30 \)
3. \( 5x_1 - 10x_2 = 80 \)
First, we need to write this system in matrix form.
### Coefficient matrix \( A \):
From the equations, we can extract the coefficients for \( x_1, x_2, x_3 \):
\[
A = \begin{bmatrix}
5 & 0 & 20 \\
0 & 10 & 20 \\
5 & -10 & 0
\end{bmatrix}
\]
### Variable vector \( x \):
The variable vector \( x \) is:
\[
x = \begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
\]
### Constant vector \( b \):
The constant vector \( b \) is:
\[
b = \begin{bmatrix}
50 \\
-30 \\
80
\end{bmatrix}
\]
### Formulating the Matrix Equation:
Now, we can express the system in matrix form:
\[
\begin{bmatrix}
5 & 0 & 20 \\
0 & 10 & 20 \\
5 & -10 & 0
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
=
\begin{bmatrix}
50 \\
-30 \\
80
\end{bmatrix}
\]
### Solving the System:
To solve for \( x \), we need to find the inverse of matrix \( A \) (if it exists) and multiply it by \( b \):
\[
x = A^{-1}b
\]
Let’s calculate the inverse of matrix \( A \).
### 1. Compute the Determinant of \( A \):
The determinant of \( A \) can be computed using cofactor expansion or directly:
\[
A = \begin{bmatrix}
5 & 0 & 20 \\
0 & 10 & 20 \\
5 & -10 & 0
\end{bmatrix}
\]
Calculating the determinant:
\[
\text{det}(A) = 5(10 \cdot 0 - 20 \cdot -10) + 0 + 20(0 - 10 \cdot 5)
\]
\[
= 5(0 + 200) + 0 - 1000
\]
\[
= 1000 - 1000 = 0
\]
Since the determinant of \( A \) is \( 0 \), the matrix is singular. This means that the system either has no solutions or infinitely many solutions.
### 2. Write the Augmented Matrix and Row Reduce:
Let us set up the augmented matrix \([A|b]\):
\[
\begin{bmatrix}
5 & 0 & 20 & | & 50 \\
0 & 10 & 20 & | & -30 \\
5 & -10 & 0 & | & 80
\end{bmatrix}
\]
We will use row reduction to row echelon form to analyze the solution.
Performing row operations:
- \( R_3 \leftarrow R_3 - R_1 \):
\[
\begin{bmatrix}
5 & 0 & 20 & | & 50 \\
0 & 10 & 20 & | & -30 \\
0 & -10 & -20 & | & 30
\end{bmatrix}
\]
- Now we can take \( R_2 \) and \( R_3 \):
- Scale \( R_2 \) down: \( R_2 \leftarrow \frac{1}{10} R_2 \):
\[
\begin{bmatrix}
5 & 0 & 20 & | & 50 \\
0 & 1 & 2 & | & -3 \\
0 & -10 & -20 & | & 30
\end{bmatrix}
\]
- Scale \( R_3 \leftarrow R_3 + 10R_2 \):
\[
\begin{bmatrix}
5 & 0 & 20 & | & 50 \\
0 & 1 & 2 & | & -3 \\
0 & 0 & 0 & | & 0
\end{bmatrix}
\]
Now we have our system of equations in reduced form:
1. \( 5x_1 + 20x_3 = 50 \)
2. \( x_2 + 2x_3 = -3 \)
3. \( 0 = 0 \) (No new information)
### Back Substitution:
From \( x_2 + 2x_3 = -3 \):
\[
x_2 = -3 - 2x_3
\]
From \( 5x_1 + 20x_3 = 50 \):
\[
5x_1 = 50 - 20x_3 \\
x_1 = 10 - 4x_3
\]
### Conclusion:
Let \( x_3 = t \) (a free variable), the solutions can be expressed as:
\[
x_1 = 10 - 4t, \quad x_2 = -3 - 2t, \quad x_3 = t
\]
The solution set is parametrized as:
\[
x = \begin{bmatrix}
10 - 4t \\
-3 - 2t \\
t
\end{bmatrix}, \quad t \in \mathbb{R}
\]
Thus, the system has infinitely many solutions.