Q−1: [2+1+1+2 marks] In the following statement, find the inverse, convers and contrapositive: (If 4x-2=10,then x=3) Evaluate the truth value of the following: ∀x(x<0)∨(x<2x) , Where the dom
Let’s break down your questions step by step.
### Step 1: Inverse, Converse, and Contrapositive
**Given Statement:**
If \(4x - 2 = 10\), then \(x = 3\).
- **Inverse:**
The inverse negates both parts of the statement:
If \(4x - 2 \neq 10\), then \(x \neq 3\).
- **Converse:**
The converse swaps the hypothesis and the conclusion:
If \(x = 3\), then \(4x - 2 = 10\).
- **Contrapositive:**
The contrapositive negates and swaps the hypothesis and conclusion:
If \(x \neq 3\), then \(4x - 2 \neq 10\).
### Step 2: Truth Value Evaluation
**Statement:**
\(\forall x (x < 0) \lor (x < 2x)\), where the domain is the set of integers.
To evaluate this statement, let’s rephrase it:
For all integers \(x\), either \(x < 0\) or \(x < 2x\).
1. **Case 1:** If \(x < 0\), then the first condition is true.
2. **Case 2:** If \(x \geq 0\), we check \(x < 2x\):
- If \(x = 0\), \(0 < 2(0)\) is false (0 is not less than 0).
- If \(x = 1\), \(1 < 2(1)\), true.
- If \(x = 2\), \(2 < 2(2)\), true.
- In fact, for all integers \(x > 0\), \(x < 2x\) holds true.
Since the only integer for which this statement does *not* hold true is \(x = 0\) and \(x < 0\) also holds for negative integers, the overall statement is:
- **Truth Value:** False (due to \(x = 0\)).
### Step 3: Predicate in Symbols and Negation
**Statement:**
"Every Natural number is an Integer."
**Domain:** Real numbers.
- **Symbolic Representation:**
\(\forall n (N(n) \rightarrow I(n))\), where \(N(n)\) means \(n\) is a natural number and \(I(n)\) means \(n\) is an integer.
- **Negation:**
\(\neg \forall n (N(n) \rightarrow I(n))\) is equivalent to:
\(\exists n (N(n) \land \neg I(n))\), meaning: "There exists a natural number \(n\) that is not an integer."
### Step 4: Proof or Disprove \( (p \land (p \rightarrow q)) \rightarrow q \)
To prove or disprove this statement, we can use a truth table.
- **Variables**: \(p\), \(q\)
\[
\begin{array}{|c|c|c|c|c|c|}
\hline
p & q & p \rightarrow q & p \land (p \rightarrow q) & (p \land (p \rightarrow q)) \rightarrow q \\
\hline
T & T & T & T & T \\
T & F & F & F & T \\
F & T & T & F & T \\
F & F & T & F & T \\
\hline
\end{array}
\]
- **Analysis**: The last column which represents \((p \land (p \rightarrow q)) \rightarrow q\) is true in all cases.
This means that the statement is a tautology, thus proving \( (p \land (p \rightarrow q)) \rightarrow q \) is **always true**.
### Summary Answers
1. Inverse: If \(4x - 2 \neq 10\), then \(x \neq 3\).
Converse: If \(x = 3\), then \(4x - 2 = 10\).
Contrapositive: If \(x \neq 3\), then \(4x - 2 \neq 10\).
2. Truth Value: False.
3. Symbol: \(\forall n (N(n) \rightarrow I(n))\); Negation: \(\exists n (N(n) \land \neg I(n))\).
4. Prove: \( (p \land (p \rightarrow q)) \rightarrow q \) is true.