Artificial Intelligence
Please fill the required field.

Find the eigen values and eigen vectors of the following [4, 0, 1; -2, 1, 0; -2, 0, 1]


To find the eigenvalues and eigenvectors of the matrix \[ A = \begin{bmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}, \] we begin by calculating the eigenvalues. The eigenvalues can be found by solving the characteristic polynomial, which is given by \[ \det(A - \lambda I = 0), \] where \( \lambda \) is the eigenvalue and \( I \) is the identity matrix. Thus, we first compute \( A - \lambda I \): \[ A - \lambda I = \begin{bmatrix} 4 - \lambda & 0 & 1 \\ -2 & 1 - \lambda & 0 \\ -2 & 0 & 1 - \lambda \end{bmatrix}. \] Next, we calculate the determinant of this matrix: \[ \det(A - \lambda I) = (4 - \lambda)\det\begin{bmatrix} 1 - \lambda & 0 \\ 0 & 1 - \lambda \end{bmatrix} - 1\det\begin{bmatrix} -2 & 0 \\ -2 & 1 - \lambda \end{bmatrix}. \] The determinant of the \(2 \times 2\) matrix is computed as follows: \[ \det\begin{bmatrix} 1 - \lambda & 0 \\ 0 & 1 - \lambda \end{bmatrix} = (1 - \lambda)(1 - \lambda) = (1 - \lambda)^2. \] Now, for the second \(2 \times 2\) matrix: \[ \det\begin{bmatrix} -2 & 0 \\ -2 & 1 - \lambda \end{bmatrix} = (-2)(1 - \lambda) - 0(-2) = -2(1 - \lambda) = -2 + 2\lambda. \] Putting these together, we calculate the determinant: \[ \det(A - \lambda I) = (4 - \lambda)(1 - \lambda)^2 - (-2 + 2\lambda). \] We simplify this expression: \[ \det(A - \lambda I) = (4 - \lambda)(1 - 2\lambda + \lambda^2) + 2 - 2\lambda. \] Expanding \( (4 - \lambda)(1 - 2\lambda + \lambda^2) \): \[ = (4 - \lambda)(\lambda^2 - 2\lambda + 1) = 4\lambda^2 - 8\lambda + 4 - \lambda^3 + 2\lambda^2 - \lambda. \] Combining like terms gives: \[ -\lambda^3 + 6\lambda^2 - 9\lambda + 4 + 2 - 2\lambda = -\lambda^3 + 6\lambda^2 - 11\lambda + 6. \] Thus, the characteristic polynomial is: \[ -\lambda^3 + 6\lambda^2 - 11\lambda + 6 = 0. \] To solve \( -\lambda^3 + 6\lambda^2 - 11\lambda + 6 = 0 \), we can use the Rational Root Theorem to test possible rational roots. Trying \( \lambda = 1 \): \[ -1^3 + 6(1)^2 - 11(1) + 6 = -1 + 6 - 11 + 6 = 0. \] So \( \lambda = 1 \) is a root. We can factor \( \lambda - 1 \) out of the polynomial: Using synthetic division for \( -\lambda^3 + 6\lambda^2 - 11\lambda + 6 \) with root \( \lambda = 1 \): \[ \begin{array}{r|rrrr} 1 & -1 & 6 & -11 & 6 \\ & & -1 & 5 & -6 \\ \hline & -1 & 5 & -6 & 0 \\ \end{array} \] We get \( -\lambda^2 + 5\lambda - 6 = -(\lambda^2 - 5\lambda + 6) = -(\lambda - 2)(\lambda - 3) \). This means the factored polynomial is: \[ -(\lambda - 1)(\lambda - 2)(\lambda - 3) = 0. \] Thus, the eigenvalues are: \[ \lambda_1 = 1, \quad \lambda_2 = 2, \quad \lambda_3 = 3. \] Next, we find the eigenvectors corresponding to each eigenvalue: 1. **Eigenvector for \( \lambda_1 = 1 \)**: Solve \( (A - I)\mathbf{v} = 0 \): \[ A - I = \begin{bmatrix} 3 & 0 & 1 \\ -2 & 0 & 0 \\ -2 & 0 & 0 \end{bmatrix}. \] This simplifies to: \[ \begin{bmatrix} 3 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}. \] From the first row, \( 3x + z = 0 \) which gives \( z = -3x \). We can take \( x = t \), leading to: \[ \begin{bmatrix} t \\ y \\ -3t \end{bmatrix} = t\begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix} + y\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}. \] So eigenvectors can be expressed as any scalar multiple of \[ \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix} \text{ and } \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}. \] 2. **Eigenvector for \( \lambda_2 = 2 \)**: Solve \( (A - 2I)\mathbf{v} = 0 \): \[ A - 2I = \begin{bmatrix} 2 & 0 & 1 \\ -2 & -1 & 0 \\ -2 & 0 & -1 \end{bmatrix}. \] This reduces to: \[ \begin{bmatrix} 2 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}. \] From the first row, \( 2x + z = 0 \) which gives \( z = -2x \). The second row gives \( y = 0 \). Setting \( x = t\), we get: \[ \begin{bmatrix} t \\ 0 \\ -2t \end{bmatrix} = t\begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}. \] 4. **Eigenvector for \( \lambda_3 = 3 \)**: Solve \( (A - 3I)\mathbf{v} = 0 \): \[ A - 3I = \begin{bmatrix} 1 & 0 & 1 \\ -2 & -2 & 0 \\ -2 & 0 & -2 \end{bmatrix}. \] This reduces to: \[ \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}. \] From the first row, \( x + z = 0 \) leading to \( z = -x \), and the second gives \( y = 0 \)). We can express this as: \[ \begin{bmatrix} t \\ 0 \\ -t \end{bmatrix}. \] Thus, we have eigenvalues and corresponding eigenvectors: - Eigenvalue \( \lambda = 1 \), with eigenvector \( \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix} \) and \( \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \) - Eigenvalue \( \lambda = 2 \), with eigenvector \( \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} \) - Eigenvalue \( \lambda = 3 \), with eigenvector \( \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \) The specific eigenvectors can be scaled, so there are infinitely many multiples for each eigenvector.