Artificial Intelligence
Please fill the required field.

Solve the system of non homogeneous equation by echelon matrix form 5x_1+20x_3=50 10x_2+20x_3=-30 5x_1-10x_3=80


To solve the given system of equations using the echelon matrix form, we can start by expressing the system in augmented matrix form. The equations are: 1. \( 5x_1 + 20x_3 = 50 \) 2. \( 10x_2 + 20x_3 = -30 \) 3. \( 5x_1 - 10x_3 = 80 \) The augmented matrix for this system is: \[ \begin{bmatrix} 5 & 0 & 20 & | & 50 \\ 0 & 10 & 20 & | & -30 \\ 5 & 0 & -10 & | & 80 \end{bmatrix} \] We will perform row operations to convert this matrix into echelon form. ### Step 1: Row Operations 1. Divide the first row by 5 to simplify: \[ R_1 \leftarrow \frac{1}{5}R_1 \] \[ \begin{bmatrix} 1 & 0 & 4 & | & 10 \\ 0 & 10 & 20 & | & -30 \\ 5 & 0 & -10 & | & 80 \end{bmatrix} \] 2. Subtract 5 times the first row from the third row: \[ R_3 \leftarrow R_3 - 5R_1 \] \[ \begin{bmatrix} 1 & 0 & 4 & | & 10 \\ 0 & 10 & 20 & | & -30 \\ 0 & 0 & -30 & | & 25 \end{bmatrix} \] 3. Divide the second row by 10: \[ R_2 \leftarrow \frac{1}{10}R_2 \] \[ \begin{bmatrix} 1 & 0 & 4 & | & 10 \\ 0 & 1 & 2 & | & -3 \\ 0 & 0 & -30 & | & 25 \end{bmatrix} \] 4. Finally, divide the third row by -30: \[ R_3 \leftarrow -\frac{1}{30}R_3 \] \[ \begin{bmatrix} 1 & 0 & 4 & | & 10 \\ 0 & 1 & 2 & | & -3 \\ 0 & 0 & 1 & | & -\frac{5}{6} \end{bmatrix} \] ### Step 2: Back Substitution Now we can express the system of equations from the echelon form as: 1. \( x_1 + 4x_3 = 10 \) 2. \( x_2 + 2x_3 = -3 \) 3. \( x_3 = -\frac{5}{6} \) Substituting \( x_3 \) into the second equation: \[ x_2 + 2\left(-\frac{5}{6}\right) = -3 \] \[ x_2 - \frac{10}{6} = -3 \] \[ x_2 - \frac{5}{3} = -3 \] \[ x_2 = -3 + \frac{5}{3} \] \[ x_2 = -\frac{9}{3} + \frac{5}{3} = -\frac{4}{3} \] Now substituting \( x_3 \) back into the first equation: \[ x_1 + 4\left(-\frac{5}{6}\right) = 10 \] \[ x_1 - \frac{20}{6} = 10 \] \[ x_1 - \frac{10}{3} = 10 \] \[ x_1 = 10 + \frac{10}{3} \] \[ x_1 = \frac{30}{3} + \frac{10}{3} = \frac{40}{3} \] ### Final Solution The solution to the system of equations is: \[ x_1 = \frac{40}{3}, \quad x_2 = -\frac{4}{3}, \quad x_3 = -\frac{5}{6} \] Update (2024-12-03): To solve the given system of equations using the echelon form, we first write the equations in augmented matrix form: 1. The equations are: \[ \begin{align*} 5x_1 + 0x_2 + 20x_3 &= 50 \\ 0x_1 + 10x_2 + 20x_3 &= -30 \\ 5x_1 + 0x_2 - 10x_3 &= 80 \\ \end{align*} \] 2. This can be represented in matrix form as: \[ \begin{bmatrix} 5 & 0 & 20 & | & 50 \\ 0 & 10 & 20 & | & -30 \\ 5 & 0 & -10 & | & 80 \end{bmatrix} \] 3. Now, we'll perform row operations to transform this augmented matrix to echelon form. ### Step 1: Row Operations - **R1**: Divide Row 1 by 5 (to simplify) \[ R_1 \leftarrow \frac{1}{5}R_1 \rightarrow \begin{bmatrix} 1 & 0 & 4 & | & 10 \end{bmatrix} \] - Updated Matrix: \[ \begin{bmatrix} 1 & 0 & 4 & | & 10 \\ 0 & 10 & 20 & | & -30 \\ 5 & 0 & -10 & | & 80 \end{bmatrix} \] - **R3**: Subtract 5 times Row 1 from Row 3 \[ R_3 \leftarrow R_3 - 5R_1 \rightarrow \begin{bmatrix} 0 & 0 & -30 & | & 30 \end{bmatrix} \] - Updated Matrix: \[ \begin{bmatrix} 1 & 0 & 4 & | & 10 \\ 0 & 10 & 20 & | & -30 \\ 0 & 0 & -30 & | & 30 \end{bmatrix} \] - **R2**: Divide Row 2 by 10 \[ R_2 \leftarrow \frac{1}{10}R_2 \rightarrow \begin{bmatrix} 0 & 1 & 2 & | & -3 \end{bmatrix} \] - Updated Matrix: \[ \begin{bmatrix} 1 & 0 & 4 & | & 10 \\ 0 & 1 & 2 & | & -3 \\ 0 & 0 & -30 & | & 30 \end{bmatrix} \] - **R3**: Divide Row 3 by -30 \[ R_3 \leftarrow -\frac{1}{30}R_3 \rightarrow \begin{bmatrix} 0 & 0 & 1 & | & -1 \end{bmatrix} \] - Final Echelon Matrix: \[ \begin{bmatrix} 1 & 0 & 4 & | & 10 \\ 0 & 1 & 2 & | & -3 \\ 0 & 0 & 1 & | & -1 \end{bmatrix} \] ### Step 2: Back Substitution Now we can back substitute to find the values of the variables. From Row 3: \[ x_3 = -1 \] From Row 2: \[ x_2 + 2(-1) = -3 \implies x_2 - 2 = -3 \implies x_2 = -1 \] From Row 1: \[ x_1 + 4(-1) = 10 \implies x_1 - 4 = 10 \implies x_1 = 14 \] ### Final Solution Thus, the solution to the system is: \[ x_1 = 14, \quad x_2 = -1, \quad x_3 = -1 \] This solution can also be written as the ordered triplet: \[ (x_1, x_2, x_3) = (14, -1, -1) \]